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Al is reshaping the way we live and our horizons, including medicine and clinical practice. Currently,
artificial intelligence is regarded as a significant novel instrument for completing the personalised
medicine revolution and creating fresh opportunities to enhance patient management. Held on 17
April 2023, as part of the SPCC Educational Project on Artificial Intelligence in Cancer Care, this
webinar focussed on important issues and topics related to this field. The session was moderated by
Claudio Luchini, Surgical Pathologist, Diagnostics and Public Health Department, and ARC-Net
Research Centre, University and Hospital Trust of Verona, Verona, IT

The Value of Al in Oncology and related fields: from Research to Clinical
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Antonio Pea is Consultant Pancreatic Surgeon at G.B. Rossi Hospital University of Verona, IT, and
Honorary Fellow at the Institute of Cancer Science of the University of Glasgow, UK. He is a
clinician scientist with a specific focus on translational research and integrative multi-omics analysis
in pancreatic cancer. In the context of oncological research and possible Al applications, various
research avenues in oncology come to mind. For instance, there are opportunities to accelerate
drug discovery and development by identifying potential drug candidates and forecasting drug
efficacy. Additionally, Al can advance our understanding of cancer biology by predicting protein
structures and unravelling complex molecular and cellular interactions. It can also enable
personalised medicine through multi-omics integration. These objectives can be achieved by
combining genomics, transcriptomics, proteomics, and metabolomics data, to identify molecular
subtypes, forecast patient survival, and tailor treatment strategies based on individual patient
profiles.

2) Identifying Relevant Features for Al Models in
Oncology Research
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In the context of oncology research, artificial intelligence can be applied to digital pathology data,
and contribute to many research objectives. For instance, Vivek Nimgaonkar and colleagues
developed an Al derived histologic signature associated with response to gemcitabine in pancreatic
cancer (Cell Rep. Med. 2023). In another study, deep learning algorithms were used to analyse the
sub-tumour microenvironment, particularly the cell-to-cell interaction between cancer cells and
immune cells (Barbara T. Grunwald et al., Cell 2021). And in a study published in the Lancet in 2020,
a deep learning model was used to predict survival in colorectal cancer patients using histological
slides. Currently, over 75% of Al applications in oncology are concentrated in cancer radiology and
pathology. This raises the question: why are these two areas being prioritised? Firstly, the nature of
image-based data is inherently complex and extensive. Each digital image comprises pixels that can
be represented by numbers, and the complete image is a metric of these numbers. Even if we are
not pathologists or radiologists, we can see that a vast amount of data can be extrapolated from each
single image. Moreover, many tasks in pathology and radiology are objective, making them suitable
for visual training and evaluation of AI models. There is a high demand for automation in these
fields, and the achievements of Al have garnered strong research and industry support for these



specialties.

What makes Al so effective at analysing complex biological data? One reason is that biological
data is often high-dimensional, with numerous features, such as genes, proteins, or imaging
characteristics, that can be measured simultaneously. Al techniques, especially deep learning
models, are designed to handle high-dimensional data effectively, identifying complex patterns and
relationships among the features. Additionally, Al can capture non-linear relationships among data.
Biological systems are known for their non-linear relationships and interactions, as seen in gene
regulatory networks, where the over-expression of one gene due to a mutation can change the
expression of a large number of other genes through the gene interaction network. Al can model
these non-linearities and uncover the underlying structure of the data. Al models also possess the
characteristic of being robust to noise and capable of efficiently processing large-scale data.
Considering the example of large-scale genomic data, such as whole genome sequencing or whole
exome sequencing, which can generate millions of genetic variants, Al can manage the noise in
sequencing data, such as sequencing errors and alignment issues, while identifying the genetic
variants associated with disease or traits relevant to oncological outcomes.

In oncology research, the AI workflow involves several steps, including data collection and pre-
processing, feature selection and extraction, model development, validation, and evaluation, as well
as interpretation and application. If we want to prepare our data for our Al analysis in oncology,
we must consider the various data sources available in the field of oncology: genomic data, gene
expression data, protein expression data, clinical information and digital pathology or radiology
images. Clinical information is among the less curated data, as it is less objective compared to
sequencing and imaging data, and often contains errors. Data quality is essential for Al projects,
requiring accurate labelling and annotation of features. For example, if we are doing a digital
pathology project, we need expert pathology on that disease to do all the labelling and annotation.
Furthermore, it is crucial to identify and remove outliers, correct for batch effects and technical
variations, and address all possible sources of bias in the experimental design and data collection.
We need data standardisation. We need to normalise data for consistent representation, and we
need to harmonise data from different sources and platforms. And finally, we must convert our data
into a suitable format for analysis. Lastly, it is crucial to determine the type of missing data and
select the suitable imputation methods to fill the incomplete data points.

After preparing our data, it is important to identify relevant features for our Al model. Collaboration
with domain experts is necessary for this task to rank features and select those that are biologically
meaningful. Not all extracted features from slides may be meaningful for the outcome.
Dimensionality reduction techniques can be utilised to manage high-dimensional data, prevent
overfitting, and eliminate unnecessary variables. Additionally, deep learning techniques can be used
for feature learning. For instance, in the case of an H&E slide of pancreatic cancer, we can
perform a cell segmentation to identify cells and extract various features from each cell, such as
stain intensity, morphology, spatial distribution, and relationship with surrounding cells. We can
then use these features to classify cells as either tumour or stroma. Although the number of features
that can be extracted is extensive, not all of them may be relevant to our outcome of interest. For
instance, we can employ deep learning techniques to extract features from the surrounding tissue at
different radii, but we must carefully select which features to include in our analysis. To avoid
overfitting our model, we need to ensure that each step of the process is accurate. Dr Pea discussed
an example of multiplexing fluorescence imaging for pancreatic cancer glands. The task was to
accurately identify and separate individual cells within the image, which was challenging due to the
irregular shape and simultaneous division of the nuclei. If a method is not working well, we need to
change the method or the model being used to improve accuracy. For example, in order to build a
classifier that differentiates tumour cells from other cells, the ratio between nucleus and cytokines is



one of the most biological meaningful characteristics, so this step needs to be accurate.

2) Identifying Relevant Features for Al Models in
Oncology Research
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From the clinician’s perspective, there are two important points to consider when using machine
learning or deep learning algorithms for medical imaging. The first point is that the desired
outcomes of the analysis are important because they determine which algorithm is the most suitable
for the task. The second point is that the model should not just work on a single dataset, but it
should be effective across different datasets and institutions. This is important for improving clinical
decision-making and should not just be for publication purposes. Therefore, independent datasets
are necessary for validating the effectiveness of the model.

How can we bridge the gap between research and clinical trials?

1. Patient stratification and selection: By analysing patient data, including medical history,
genomic information, and biomarkers, Al can identify specific subgroups of patients more
likely to respond to a particular treatment. This enables the design of targeted and
personalised clinical trials, leading to better outcomes and reduced costs.

2. In Silico Trials: Al algorithms can simulate various trial designs and predict the trial’s
success based on parameters such as sample size, treatment arms, and endpoints. This helps
researchers design more efficient and effective trials, minimising required resources and
maximising the chances of success.

3. Real-time monitoring and adaptive trial designs: Al can monitor trial data in real-time,
allowing researchers to identify potential issues or trends early in the process.

4. Predictive modelling and data extraction: Al can be used to develop predictive models that
estimate patient outcomes and to analyse and extract relevant information from unstructured
data sources, such as electronic health records and medical literature.

Considering each phase of the clinical trial, Al can provide valuable insights. In phase I, it can
analyse preclinical data to estimate the optimal dose of the drug, identify side effects, and identify
biomarkers. In phase II, it can help in patient stratification and selection to identify the most
appropriate patient cohorts. In phase III, it can optimise trial design, predict trial success, analyse
interim results, and interpret the final trial results. In the post-marketing surveillance phase, Al can



monitor large-scale real-world data to look for adverse events, efficacy trends, and patient
subgroups with better or worse response to the drug being studied.

The Role of AlI-Pathology in Precision Medicine Clinical Trials

Eric Walk is Chief Medical Officer at PathAl in Boston, USA, and a pathologist with more than two
decades of experience in the field of oncology drug and diagnostics development. Prior to his current
role, he held the position of CMO at Roche Tissue Diagnostics and was involved in translational
management at Novartis Oncology. The use of precision medicine has become the standard for
developing cancer therapies and treating patients in real-world settings. The accurate and
reproducible assessment of biomarkers is a critical aspect of such model. In clinical trials, whether
using a biomarker-enrichment design or a biomarker-stratified design, it is assumed that
biomarkers, particularly histopathology ones, are measured accurately and reproducibly. And this, of
course, becomes even more important in the clinic, where we are making treatment decisions for
patients. Unfortunately, at least in some cases, it is not a safe assumption that biomarkers are
assessed in an accurate and reproducible way. As we can garner from an article published by David
Rimm and colleagues in 2022, which compared four different FDA registered tests to detect PD-L1,
when it comes to scoring immune cells such as CPS scoring, the reproducibility is very low. The
interclass correlation coefficients can be as low as 0.2 for immune cell (e.g. CPS) scoring, which is
concerning. TPS scoring is better but still needs significant improvement.

Another study, by Aileen Fernandez, David Rimm, and colleagues, aimed to determine if the current
ERBB2 (HER2) assays and interpretation methods can accurately differentiate between 0 and 1+
scores, which is necessary for the HER2-low companion diagnostic test used in clinical trials for
trastuzumab deruxtecan. The significance of HER2-low is widely recognized now, particularly in
light of the Destiny-04 data. The findings of this study indicate that while the interrater concordance
at the 2+/3+ cut-off is acceptable, the scoring accuracy for HER2 low (0 and 1+) was poor (26%
concordance) and could lead to mistreatment in the real world. This is clearly a challenge that we
need to address because while the drug is clearly active, there is also a significant issue with
interpretation accuracy and reproducibility. The same issue applies outside of oncology as well.
Thinking, for example, of non-alcoholic steatohepatitis (NASH), there are biomarkers used such as
the NAFLD activity score and the fibrosis score, measured by H&E and trichrome staining
respectively. These biomarkers not only help select patients for clinical trials but also are used as
endpoints to measure drug effectiveness. The issue, similar to PD-L1 and HER2-low, is that these
important tissue biomarkers suffer from poor reproducibility. David Kleiner’s studies, conducted 14
years apart, show that there has been no meaningful improvement in reproducibility of these key
scoring parameters, despite major efforts to improve education and training. In recent years, there
has been increased attention in research and literature on the significance of NASH pathology
scoring variability in achieving accurate patient staging and endpoint efficacy evaluation in clinical
trials. Liver biopsy remains the standard for diagnosing and tracking NASH progression, and is
currently the primary inclusion criteria and endpoint in NASH clinical trials. The NASH Clinical
Research Network (CRN) fibrosis staging system is the most validated approach for evaluating
changes in disease stage in these trials. Despite being validated, the NASH-CRN manual scoring
system is prone to both inter- and intra-observer variability. This variability can potentially reduce
the likelihood of observing the true drug effect by up to 32%, which in turn hinders the success of
clinical trials and prevents promising therapies from reaching patients.

How can Al help mitigate or solve some of these problems? Al pathology can be utilised in two
ways to improve and enable precision medicine in 2023: firstly, it can be used to enhance the
abilities of human pathologists by providing consistent and quantitative biomarker results at scale.
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This is achieved by reducing the impact of intra- and inter-observer variability, improving patient
selection strategies, and standardising the assessment of biomarkers, histologic scores and
endpoints. For example, Al can accurately and reproducibly count all tumour cells and immune cells
and indicate which fraction of each are positive for PD-L1, a challenging task for pathologists to
perform manually. Secondly, Al can identify signatures or biomarkers that are indiscernible to the
human eye. Spatial location-based cellular and tissue relationships are becoming increasingly
relevant as predictive and prognostic biomarkers, but assessing spatial patterns of multiple cell
types and their locations is impossible for humans without advanced analytics. This area is just now
being explored in depth and has tremendous potential for the future of precision medicine.

Before moving on to some examples, Dr Walk provided a brief overview of different machine
learning methods. These include convolutional neural networks, graph-neural networks, end-to-end
models, and generative adversarial networks. The variations between these methods are quite
distinct. Convolutional neural networks are highly supervised and require a pre-existing hypothesis,
which makes them suitable for applications such as PD-L1 scoring. On the other hand, end-to-end
models are hypothesis-seeking and weakly supervised, allowing the models to identify correlations
that may be imperceptible to humans. Graph-neural networks fall in the middle of this spectrum,
while generative adversarial network technology occupies the opposite end. Generative modelling
refers to a type of machine learning task that falls under unsupervised learning, where the aim is to
automatically identify and learn the patterns or regularities present in a given set of input data. The
objective is to develop a model that can generate or produce new examples that are similar in nature
to the original dataset. This is how ChatGPT is powered. We can use it to generate synthetic data
and transform image quality. For instance, we can transform one scanner image into another, which
can help during the training of machine learning models.
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Dr Walk then showed an example of a traditional convolutional neural network model that was
developed by PathAl to address the PD-L1 scoring problem. This model was trained using 350,000
human pathologist annotations and was able to discern the difference between PD-L1 negative and
positive cells as well as between tumour and normal tissue in lung cancer. The model was initially
validated by comparing the Al output with human pathologist counts in 150 x 150 pixel squares of
the image prior to larger scale validation. The workflow for a pathologist using this Al tool would be



to consider the Al score in the context of the tissue and cellular visualizations (heatmap overlays)
indicating how the tool has assessed different tumour tissue regions (e.g. tumour, stroma, necrosis)
and individual cells (tumour, immune, PD-L1 +/-, etc.) The final task for the pathologist is to accept
or reject the score prior to reporting. PathAl presented a study at the AACR meeting in 2022, that
validated the accuracy of the Al model for PD-L1 scoring in 350 cases of lung cancer. The study
compared the consensus score of 12 human pathologists with the Al score, and found a high
correlation of 0.93, indicating that the model is accurate. Interestingly, the study also revealed that
some pathologists perform much higher against consensus than others, highlighting the variability
in manual scoring that the Al model aims to address.

Another way to look at accuracy is to look at actual outcome data. A retrospective analysis of 10
outcome data was conducted by PathAl in collaboration with Bristol Myers Squibb (BMS), using
OPDIVO (nivolumab) clinical trials, specifically the Phase 3 CheckMate 57 and 26 studies. Compared
to the original manually derived PD-L1 prevalence figures, Al scoring resulted in a substantial
increase in the number of patients assessed as PD-L1 positive. The study aimed to determine if the
Al-positive patients were falsely or truly positive. Recalculation of the survival data revealed that the
recurrence-free survival of dual positive patients (positive both by Al and manual) and Al-only
positive patients were similar. This suggests that the Al-positive patients may be biologically and
clinically relevant and could respond well to treatment. Of course, the results are based on
retrospective data and require careful interpretation, but they certainly are intriguing.

Another machine learning technique, graph-neural network (GNN), is a pattern-based method which
involves identifying nodes that represent nuclei or cells, and edges that represent the distance
between those cells. The algorithm then analyses whether a spatial pattern connecting different cells
on a slide corresponds to the endpoint of interest. In the example given by Dr. Walk, the technique
was used to develop a model for CD8 cytotoxic T-cells that could automatically generate readouts for
different immune phenotypes such as hot/inflamed, cold/non-imflamed, and immune excluded. These
patterns have been shown to correlate with response to immune oncology therapies but suffer from
subjectivity and poor reproducibility. When the PathAI CD8 immune phenotyping algorithm was
applied to the CheckMate 67 study, comparing NIVO versus NIVO + IPI in melanoma, the algorithm
identified 38% more responding patients who were PD-L1 negative/CD8-excluded compared with
predicting response via PD-L1 status alone. In addition to increasing the responsive population, the
benefit improved, with a hazard ratio of 0.46 vs. 0.37 for PD-L1 alone. This is an example of how Al
pathology can be utilized to discover and reveal novel biomarkers and potentially benefit patient
outcomes.

Outside of oncology, in conditions like NASH, for instance, Al algorithms can measure and evaluate
biomarkers in a similar way, generating continuous biomarkers with a lot of potential for clinical
trials. To illustrate this, Dr. Walk gave two examples of retrospective NASH clinical trials that were
reanalysed with Al In the first example, a phase II study of a drug called pegbelfermin, the human
glass analysis showed no statistically significant difference between the placebo and treatment arms.
However, when the slides were digitised and run through the AI-NASH algorithm, a highly
statistically significant difference was generated, with more of a drug response curve as well. In the
second example, a different NASH drug called semaglutide was analysed. The placebo response rate
generated through human analysis was very high, but when reanalysed with Al, this dropped
dramatically. This is important because an artificial increase in the placebo response rate can make
it much more difficult to show the benefit of the drug. Lastly, Al has the potential to create
continuous biomarkers in fields where ordinal biomarkers are currently used. For example, a
machine learning-based continuous fibrosis score has the potential to increase sensitivity and
resolution to a detect drug response in NASH clinical trials.

In sum, ensuring the accurate and consistent measurement of tissue-based biomarkers in clinical



trials is crucial for precision medicine in various fields, including oncology and NASH. However,
existing biomarkers often have high inter-reader variability, which can be problematic. Fortunately,
Al pathology can help address this issue by assisting pathologists in assessing biomarkers like PD-
L1, HER2, and NASH NAS, thereby reducing reader variability and improving clinical trial
enrolment and endpoint analysis. Moreover, Al pathology can aid in the development of novel
predictive biomarkers by utilising advanced machine learning techniques like GNNs and CD8 spatial
phenotypes. This shows the potential of Al pathology to contribute to the field of precision medicine
by improving the accuracy and reproducibility of tissue-based biomarker measurements.

Al applications in healthcare

Peter Krusche, Director of Data Science in the Advanced Methodology and Data Science team at
Novartis, Basel, CH, is a computer scientist who specialises in the development and improvement of
clinical study planning at Novartis. His team is responsible for the development, evaluation, and
deployment of new statistical, Al, and ML methodologies. While their work is primarily theoretical in
nature, it is applied in the context of drug development. As we tend to bring Al together with other
concepts from statistics, from analytics and so on, Dr. Krusche started with a definition of artificial
intelligence: it is a technique used to train computers to perform complex tasks by providing them
with examples. A simple example is using images of cats and dogs to teach the computer how to
distinguish between them. This type of input could also be medical images, as discussed in previous
talks. The model used in Al consists of a set of parameters that describe what the model is looking
for, and a set of computational instructions that explain how the parameters are used to distinguish
between cats and dogs. Al is not limited to this basic approach, however. It can also take high-
dimensional data such as images and convert them to low-dimensional data, such as a single value
indicating whether it is a cat or a dog. Conversely, Al can take a model and use randomness to
generate new images of cats or other types of medical images. This capability makes it much more
versatile, allowing for the combination of data from different modalities.

Generative Al, or GenAl, is a form of artificial intelligence that is capable of generating a diverse
range of data, including images, videos, audio, text, and 3D models. It accomplishes this by studying
patterns in existing data and applying this knowledge to create novel and distinctive outputs. For
instance, the system generates a text embedding of an input sentence, followed by utilising an image
generator to produce the corresponding image. The two models work in tandem to generate the
desired output. Among real-world examples, the input for ChatGPT or Bing Chat is text, and the
output is also text. DALL-E, StableDiffusion, Bing Image Creator, etc., use text as input and generate
images as output. Segment Anything is a model with the ability to segment images in a highly
effective and adaptable manner. And BioGPT is an example of an open-source tool that can make
predictions using a training set derived from PubMed.

If all of these tools are out there, why is applying Al in a medical or scientific setting difficult?
Firstly, in clinical decision making the stakes are very high; decisions affect human lives very
directly. Moreover, patient data are personal and cannot be shared or combined easily. Secondly,
clinical data are difficult. Even data from clinical trials contain missingness and training data are
often sparse. Noise and uncertainty need to be modelled explicitly, and this is not easy. Lastly, data
collection is often not standardised: even transferring medical images between doctors may not
entirely be straightforward. There are also some methodological difficulties with machine learning
models. The first one is that complex models can be made to behave in unexpected ways. A classic
example, from Ian Goodfellow and colleagues’ paper “Explaining and Harnessing Adversarial
Examples”, is the panda and the gibbon. The model is given the picture of a panda and recognises it
as such with relatively high confidence. However, adding noise that is not visible to the human eye
makes the model fairly confident that it is a gibbon. The implications of that in medical imaging can



be left to the imagination. Another issue is that models are not perfect, and when they generate
output randomly, they might generate things that are not real. When we rely on models that build
complex outputs based on randomness, we cannot always expect them to generate things that are
rooted in reality without a lot of feedback.

There are other challenges to consider as well. Firstly, the training process itself may introduce
biases or be inherently biased, particularly in the case of imaging data. For example, a model may
focus on learning about skin markings rather than the diagnostic properties of medical images.
Secondly, these methods may be misused by malicious actors, and without a complete understanding
of their potential, it may be difficult to defend against such attacks. Finally, we must remember that
methodology research does not always prioritise solving real-world problems effectively. Many of the
metrics used to develop these methods may not align with the most practical applications. How can
we address these issues? This is an ongoing effort, and the best approach would be to implement
regulatory guidelines and ethical principles for Al. Dr. Krusche mentioned three sources that
showcase the advancements made in this area: the FDA has released draft guidance on software as a
medical device, which outlines the development and testing process that Al models must adhere to
before being implemented. The European Commission has also developed guidelines for ensuring
the trustworthiness of Al. Finally, an interesting talk from a major machine learning conference
sheds light on how to assess the validity of Al models in the public domain from the perspective of
the methodology field.
(https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machi
ne-learning-software-medical-device; https://ec.europa.eu/futurium/en/ai-alliance-
consultation.1.html; https://meurips.cc/virtual/2022/invited-talk/55868)

Considering the potential of generative Al in the future, the first application that comes to mind is
text generation, given the vast amount of text produced daily for tasks such as writing papers,
abstracts, presentations, notes, and summaries. The second application is in finding candidates
for hidden complex relationships through pathway analysis and smarter literature research. The
final application is in finding biomarkers and supporting diagnostic processes. What all these
implications have in common is that they shift the human role from task execution or creation to
quality control. However, it is important to note that quality control is not always easier than
creation and must be carefully considered when deploying generative Al. While Al can provide
helpful summaries and aid in learning, subject matter expertise is still crucial, as Al may make
errors or overlook important details.
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Dr. Krusche concluded his presentation highlighting some areas that his group works on: good
practice for data science, which is crucial for achieving other objectives as well; conditional data
synthesis that combines medical images and clinical data to create interpretable machine learning
methods. This method can bridge the gap between clinical trials, real-world data, and images.
Finally, privacy and synthetic data. We must ensure models preserve individual privacy. Overall,
we need to acknowledge that Al is a new tool that needs to be differentiated from other tools and
operationalised. The debate surrounding Al deployment is reminiscent of the introduction of
calculators or computers in schools, which were initially controversial but ultimately unstoppable.
We need to develop the appropriate skills, practices, and legal and regulatory foundations to ensure
that Al tools and methods are deployed safely and do not cause harm.

Patient Involvement and Empowerment in Al Clinical Dimensions

Elliot K. Fishman is Professor of Radiology, Surgery, Oncology and Urology at Johns Hopkins
Hospital, Baltimore, US. There is no doubt that artificial intelligence has the potential to
revolutionise medicine, improving patient care and the physician-patient relationship. Every aspect
of clinical trials can be enhanced with Al, from trial design to patient recruitment, outcome
monitoring, and reducing patient dropout. But what about the patient perspective? For the past
seven years Prof. Fishman has been working with Al for the detection of pancreatic cancer, and in
his experience, patients are very enthusiastic when they learn that Al can detect pancreatic cancer
at an early stage, leading to a potentially considerable improvement in survival rates. From Al and
deep learning to radiomics, the multitude of possibilities in the field of medicine emphasises the
importance of analysing, collecting, and understanding data. Whether it is detecting disease,
monitoring patients’ suitability for specific therapies, or predicting outcomes, these factors are all
significant, and patients tend to be very supportive when presented with the potential benefits.

An article published in March this year in the European Journal of Radiology looked at liver
metastasis and found that Al could detect half of the metastases that were missed by radiologists
reading the studies. It is very easy for patients to get on board when shown these significant
improvements. However, they are also concerned about the failures of Al. For instance, in recent
years a number of articles were published about using a sepsis prediction algorithm. Being able to



predict which patients are at risk for sepsis would enable healthcare providers to proactively
manage those patients. On the basis of this, one of the large EHR vendors, EPIC, developed a
program. However, when implemented, it only picked up 7% of the patients with sepsis who could
have been treated earlier, and failed to identify 1709 patients with sepsis already identified by the
hospital. It was very unsuccessful and had to be withdrawn. Although there was no published
evaluation of that program, it still had been adopted by a large number of hospitals because of its
convenience and availability.

Proper evaluation and publication of results is fundamental to ensure the success and safety of Al
implementations. Most of the 500 AI algorithms that the FDA has approved have limited datasets
from only one institution, which makes it difficult to generalise the results to other institutions. This
lack of data concerns patients, who want to be part of the conversation about Al's implementation.
In a recent paper, Macri and Roberts argue that patient involvement is crucial for Al to be
successful, and shared decision-making is essential. Physicians need to have a clear dialogue with
patients to build trust and ensure that patients see Al as a valuable tool in their treatment prospects.
Collaboration and shared decision making between physicians and patients is critical in the
implementation of Al in clinical trials and patient care. Patients must be informed of their options
and the potential risks involved in the use of artificial intelligence. It is important for physicians to
explore patient-specific values associated with the implementation of Al and apply them to clinical
decision making.

An article published earlier this year by Alexandra Derevianko and her group discusses the
importance of patient-doctor communication in Al-aided cancer diagnosis. The results again point to
the fact that without a clear understanding and communication between patients and doctors about
the risks and benefits of Al, the technology will not be able to fulfil its potential. We also need to
keep in mind that the rapidly changing AI landscape can lead to confusion and fear among patients,
thus communication and education should be ongoing to help patients understand the benefits and
limitations of the technology. Particularly in the context of clinical trials, companies developing Al
algorithms should focus not just on technical development, but also on how to effectively
communicate progress to patients. The field of Al is constantly evolving, and new discoveries can
change our understanding and progress. It is important for patients to trust that healthcare
professionals will make the right choices.

In terms of clinical trials, A Deloitte article posted in 2020 talked about how Al can facilitate the
development of patient-centric clinical trial designs by optimising and accelerating the process. It
can also drive novel methods of data collection that minimise reliance on traditional in-person trial
sites. For instance, body sensors and wearable devices like heart monitors, patches, and sensor-
enabled clothing can be used to remotely monitor patients’ vital signs and other data, reducing the
need for invasive methods. Al can be combined with robotic process automation to link and
harmonise data across various modalities of data collection. By applying machine learning to clinical
data, it can illuminate complex relationships between different data domains and facilitate
automated data management. Additionally, natural language generation can be used to auto-
generate content for trial artifacts, thus streamlining and accelerating the process of creating
regulatory documents.

One of the strengths of Al is its ability to predict things that may not have been considered before.
For example, Prof. Fishman’s team conducted a study on detecting and managing patients with
cystic pancreatic lesions, which will shortly be submitted for publication. A few years ago, they
published the results of a trial with over 800 patients across multiple countries where it was found
that 40% of patients required surgery while the remaining 60% did not. Later, using a program
called CompCyst that analysed the data, they were able to predict accurately in 60% of cases.
However, they recently developed a new program using transparent Al, which increased accuracy to
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90% using the same data. This demonstrates that computers and the constantly changing technology
present new opportunities to think differently and achieve higher levels of accuracy.

Despite the potential benefits of Al in healthcare, a survey from the Pew Research Center revealed
that 6 out of 10 adults feel uncomfortable with the idea of Al being used to diagnose them. Only 38%
of respondents believed that Al could lead to better health outcomes, while 33% believed that it
would worsen their health and 27% were unsure. The survey also found that men, younger
individuals, and those with higher levels of education were more receptive to the use of Al in clinical
settings. However, the level of comfort varied depending on the purpose of the Al application.
Patients were more comfortable with Al making minor decisions, such as examining chest x-rays, but
less comfortable with Al making cancer diagnoses. The survey revealed that patients who reported
having little to no knowledge about AI were more likely to feel uncomfortable with their provider
using it compared to those who were familiar with it. Concerns were raised by three quarters of
respondents that healthcare providers are implementing Al tools too quickly without understanding
the risks, while only 23% felt they were moving too slowly.

The results of a survey published by Dhruv Khullar in JAMA indicate that a significant proportion of
patients are uncomfortable with receiving a diagnosis from an Al algorithm, even if it is 90%
accurate. This is despite the fact that many patients acknowledge that Al can improve healthcare
outcomes. Patients have expressed that they trust their clinician more than Al, even if the clinician’s
accuracy is lower. It is important to recognise that patients’ comfort with Al is dependent on its
specific application, and work must be done to ensure that patients understand how it can be used in
conjunction with clinicians to provide the most accurate diagnoses and treatments. The survey
revealed that a majority of respondents expressed worries about potential negative consequences of
Al use in healthcare such as misdiagnosis, privacy violations, reduced interaction with clinicians,
and increased healthcare expenses. These concerns demonstrate the need to actively involve
patients in the process of Al implementation and to address their apprehensions. Patients are often
afraid of “black boxes”, so it is important to have explainable Al that is transparent in its decision-
making process. Many tech companies such as Microsoft, Google, Apple, and Facebook are focussing
on developing explainable Al

The New England Journal of Medicine has recognised the significance of Al by introducing a
dedicated column that examines its potential impact on healthcare. Their point is that Al is changing
how we are practising medicine. Just as computer acquisition of radiographic images did away with
the x-ray file room and lost images, Al machine learning can transform medicine. To the question,
“Will AI put radiologists out of business?” the answer will be that the technology will not put health
professionals out of business, but will enable them to work better. However, radiologists who refuse
to use Al risk to become obsolete. The challenge lies in implementing Al and connecting with
patients to ensure that human-human interactions remain a vital aspect of medicine. It is crucial to
address this issue to ensure that patients can take advantage of the advancements in healthcare.



