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The second webinar in the SPCC Artificial Intelligence in Cancer Care 2022 series took place on
23rd November 2022. It was chaired by Viktor Kölzer, Attending Pathologist and Assistant
Professor, Institute of Pathology and Molecular Pathology, University Hospital and University of
Zurich. This seminar is held at an exciting phase in medical diagnostics and in medicine in general.
We are witnessing a paradigm change where the digitalisation of medical diagnostics offers
enormous opportunities for precision medicine. Doctors and engineers are coming together as joint
drivers of innovation in this sector to create new methods for active diagnosis and precise treatment
of patients, in cancer in particular, but also in other diseases. Where can this innovation lead us?
These new data-driven techniques will be able to support precise and detailed analysis in clinical
diagnostics. We have entered the era of big data where the possibility of digitising clinical,
laboratory imaging data is becoming increasingly important and enables us to use clinical support
tools driven by advances in machine learning and computer science. Digitalisation becomes a new
tool, but also a connecting principle between medical specialties in future medical practice.

Computer-assisted Diagnostics: Global Challenges and Opportunities

Jeffrey David Iqbal, is a Postdoctoral Fellow at the Digital Society Initiative of the University of
Zurich, in Switzerland, working on Artificial Intelligence in Medicine. His research focusses on the
applications of AI within current and future clinical settings. Dr. Iqbal started with a terminology
definition for the title of his presentation. Diagnosis cannot be a standalone process. By itself, it does
not provide much value to the patient. When we talk about diagnosis, we need to see it in the
context of treatment, alleviation, prediction, monitoring, and the whole wider process framework. As
for “computer-assisted”, there is a lot of talk about AI, machine learning and digitalisation and the
concepts are often used interchangeably. Digitalisation is a very wide term. In our context, it is
essentially a process of using computer systems for the provision or support of healthcare delivery.
“Artificial Intelligence” (AI) is placed within this field: computer systems able to perform non-



physical tasks normally requiring “Human Intelligence”. And here we have a problem already
because there is not a lot of clarity on what Human Intelligence really is. Within the area of
digitalisation, there are further terms: Machine learning and Deep learning. Electronic health
records (EHR), for example, are not really part of what we call artificial intelligence. So, the term
computer-assisted diagnostics is something more open. It is definitely digital, it may be AI, but not
necessarily.

The vision of AI Diagnostics is to deliver greater value to key stakeholder groups: healthcare
professionals, patients, and payers. For the healthcare professional, assistance in making a diagnosis
can decrease the provisional burden. The patient, of course, can profit from better outcomes, and
possibly a decreased interventional burden down the line, by having the right diagnosis from the
very beginning. And payers may have a decreased financial burden, although there is no evidence
yet that AI diagnostics can really bring costs down on a systemic level. But it is certainly one of its
goals. The key underlying mechanisms of how this value can be provided are well known: a shift to
earlier intervention, of time of pre-disease state versus success rate of potential intervention. We
can also observe a shift along the self-care spectrum caused by digitalisation, including diagnosis.
Another aspect of the value given by AI diagnostics is to enable the physician to cope with an
exploding domain knowledge, at molecular, genetic, histological levels. Let’s think for instance of
the advances made in the past ten years in our knowledge of DNA damage response (DDR). On a
more histological level, non-small cell lung cancer used to be seen as one disease. Over time we have
discovered more and more differentiation, it is almost like a syndrome, a deeply sub-grouped kind of
disease. And this, of course, has implications for clinical practice. We are seeing an explosion of
registered clinical studies. There are many different treatment protocols, sometimes even
competing. It is very difficult for physicians and other healthcare providers to keep up with all of
this, and computers, whether it is AI or not, can help us cope.

Another vision, perhaps 10-25 years down the line, is the hotly discussed digital twin. A digital twin
is a live or near-live representation of physical entities, such as organs, body, potentially even the
mind. It could help with the process of continuous screening, monitoring, and diagnosis in an
automated way, moving away from the resource-constricted healthcare provision models we are in
right now. The physical twin, i.e., the human, would constantly feed data into their digital twin



model. Events, actions would be recorded, for instance a surgical procedure, and there would be a
feedback mechanism. The digital twin is not just about diagnostics and screening, it also shows how
that individual acts.

The journey of computer-assisted diagnostics began back in the 1950s, and some of the articles
written at that time even anticipated those ethical, legal, and societal issues that we are discussing
today. A paper published on The Lancet in 1954 introduced a device capable of producing a list of
potential diagnoses from registered symptoms. In the early 1970s, diagnosis implemented with an
electrical computer surpassed human accuracy. DIALOG and INTERNIST-I, systems for computer
assisted medical diagnosis, were developed, and then extended to covering general internal
medicine. Between the 1980s and 2000s we saw a lot of activity aided by increased computing
power and access, as well as algorithm development. But the real game-changer moment
happened in 2009 with the American Recovery and Reinvestment Act (ARRA) that established
incentives for Medicare providers to make “meaningful use” of EHR technologies. This led to a
massive surge in data availability and usability in the US, but the rest of the world is following suit.

The FDA’s list of AI/ML-enabled devices, up until October 2021, comprised of 343 devices. From
then until the end of July 2022, nearly 200 more devices were added. Diagnostics, in the form of
radiology, is at the forefront, accounting for 79% of those devices. Digital health funding surged over
the last few years, peaking in 2021. We’ve seen a small slowdown in the first two quarters of this
year, of course dictated by major economic factors, but the long-term projections are still very
positive. As to the funding trends, the top funded value proposition is R&D, while oncology is among
the six top funded clinical indications.

The barriers to more widespread adoption are to be found in the Evidence-Based Practice (EBP)
lifecycle. We start with research, where we gather knowledge, then we enter the development
phase, we come up with a device, drug, or procedure, and finally, we need to transfer it into clinical
practice to reach the clinical endpoint. However, there is a research-to-practice gap. Less than 50%
of those evidence-based practices make it to clinical practice and it takes an average of 15 years.
There is also a regulatory gap, the lack of an effective regulation of digital health technologies. The
FDA, but also other national players, are varying their requirements and of course, digital health



devices are very different from what regulators are used to, but also physicians and providers. The
challenges in this field are not just on the technology side, the algorithms, the data collection, but
also regulatory and revenue models. In sum, digital health technology is a vast category. Diagnostics
must be seen not just as an isolated function, but in a more integrated way. We’re seeing some key
trends and mechanisms driving potential value, albeit still unproven at a systemic level. The digital
twin concept may be a game changer. Computer-assisted diagnostics is not new. It goes back to
mechanical computing devices of the 1950s and huge funding is still pouring in. With funding, we
shall probably see some changes in the market, and new products being driven. The real question
ultimately, remains adoption.

Digital pathology: Image analysis and machine learning in cancer diagnostics

Andrew Janowczyk is Assistant Professor, Biomedical Engineering Department, Emory University,
Georgia, US, and Senior Research Scientist, Precision Oncology Center, Lausanne University
Hospital, Switzerland and a Data Analyst at Geneva University Hospital. Computer-aided
diagnostics (CAD) uses algorithms to help clinicians analyse data, such as fMRI, histology, X-ray,
CT, etc. Digital Pathology is a transition from an analogue to a digital process. Previously,
pathologists would look at tissue on a glass slide; that slide is being digitised and pathologists are
now looking at those images on computer screens. Prof. Janowczyk showed an example of a typical
output. Hematoxylin and Eosin stains (H&E) were used: H stains cell nuclei in blue, and E stains
extracellular matrix and cytoplasm in pink. The 40x magnification image, the most commonly used
clinical magnification, was 100k-by-100k pixels, resulting in a compressed file of about two
gigabytes. If this image were to be uncompressed, it would coincide with roughly 32 gigabytes in
raw data. These images are massive and potentially contain a wealth of information. Why is digital
pathology useful? Almost all patients have an H&E slide in order to confirm their cancer diagnosis,
and as a result there are vast amounts of these glass slides already in existence within the hospital’s
slide repositories and biobanks, most of which are kept for about 10 years for legal reasons.
Digitising them is relatively inexpensive, typically costing only a few dollars per slide. More digital
data is now being routinely created every day at an increasing rate. As more hospitals are
purchasing digital slide scanners, they are scanning more slides, essentially building our cohorts for
the future. Digital pathology improves the efficiency and robustness of medical diagnoses. It is fast
and reproducible. How can we use this data? We can perform data mining to identify trends;
identify subtle image patterns that may not be visually discernible; build systems to aid – not replace
– pathologists through decision support. In fact, we will probably need more pathologists, to deal
with the amount of data we are going to produce. The key concept here is the phenotype: the way in
which the tissue presents itself is the total sum of all the underlying changes. Even if we do not
know the RNA expression levels, even if there are methylation statuses that we do not know, if there
are mechanisms that we are not even aware of, as long as they have some impact on the way that
the tissue presents itself and in the way the body responds, we can now quantify and use that to
predict therapy response or the prognosis of that patient. In the long-term, ideally, this will lead to a
concept of precision medicine where we treat each person individually in the most optimal way
possible based on large amounts of retrospective data that essentially finds a digital clone, instead of
a digital twin, i.e., someone who is very similar to them and has previously been successfully treated.

There is a difference between research and clinical CAD applications. In clinical applications,
we essentially recapitulate and automate existing processes, tasks like cancer detection, grading,
counting, area estimation, that are very laborious and subject to interobserver variability. We can
use high throughput screening, whereby, instead of having to look through numerous slides to
confirm our diagnosis, we can have an algorithm that finds the most relevant one first. CAD
applications can bring improvements through quantification, reproducibility, and definition
refinement. For example, cribriform is a pattern in prostate cancer that seems to be associated with



biochemical recurrence. The problem is that visually it is difficult for pathologists to agree on what it
looks like, and that depends very much on whom they were trained by. However, we can have an
algorithm identify this pattern. Professor Janowczyk’s team in Cleveland did just that. They took a
series of pathologists’ annotations; they trained a deep learning algorithm to find this cribriform
pattern, and what they saw was that they could actually start to stratify these patients by the
likelihood of their biochemical response. This works best in the Gleason grade group 2, where
patients are either going to be given active surveillance or more aggressive treatments. So, here we
can even start to interstratify that group and provide better care for those patients.

On the other hand, some research applications are trying to extend beyond our current knowledge.
They are looking at new features and metrics, striving to identify different novel subtypes, to
connect with biological elucidation, and we expect to see improved patient care through
augmentations and new insights. There is realistically a 5 to 10-year difference between these two
categories of tools we are building. Another interesting example concerns cell orientation entropy
(COrE). Researchers in Prof. Janowczyk’s team found that when all the cells or the cell nuclei are
facing in the same direction, this is associated with a less aggressive form of prostate cancer. While
if the cells are facing in different directions or there is more entropy in their orientation, this is
associated with a more aggressive form. This is a great example for two reasons. The first is that
once you are aware of this pattern, which was discovered by an algorithm, not a human, you can go
and observe it personally in a multitude of cases. This is something discovered by a computer that
we can visually verify. Of course, a human could not look at a million cells on a whole slide image,
estimate their orientation, and then extrapolate this to an entropy feature. But a computer can do so,
very quickly and accurately. We can take this cell orientation feature further. We can take things like
nuclear features, their size and shape, and they should have added value above common, let’s say,
tumour node metastasis grading schemes, and actually provide better stratification in terms of
prognosis for patients. For instance, we looked at nuclear shape and orientation features from H&E
images in early-stage Estrogen Receptor Positive (ER+) breast cancers to predict survival. This is
the most common type of breast cancer in the US and identifying which patients will receive added
benefit from adjuvant chemotherapy is crucial. Along similar lines, spatial arrangement of tumour
infiltrating lymphocytes (TILs) and local density variance shows high correlation to the patient
response to Nivolumab in non-small cell lung cancer (NSCLC).

What are the added values of digital pathology? On the clinical side, we can expect to have
near-term deployment of many of these tools. H&E slides are already routinely being created every
day all over the world for cancer patients, so, once the infrastructure is in place, we just need to
have them scanned. Once they are scanned, the infrastructure can operate upon them and deliver a
result. There is an opportunity here for large-scale cross-site validation of prognostic/predictive
work, because we are creating large amounts of data, but we are also able to share that data fairly
easily. It is worth noting that retrieving H&E slides from the archives and scanning them is very low
cost. Typically, in the order of $1 or 2. This is quite different than trying to do some type of genetic
sequencing. Digital pathology is inexpensive because we are only paying for computers, and the
infrastructure is highly reusable. It is non-destructive: we can keep re-examining the same slide
multiple times from different angles as the technology improves. It also allows for easier sharing of
data. We can transmit digital slides over the internet to our colleagues, who will receive them
presently. Interestingly, ethics requirements for digital pathology tend to be less strict than genetic
information because the data is essentially anonymised by default. On the research side, we can now
start to use digital pathology to examine large amounts of slides to help account for tumour
heterogeneity. Costs in generating additional slides are minor. If we make 5 or 100 slides for a
patient, the real expense is in the pathologist’s time to evaluate those slides, not in the generation of
the data itself. We can now use digital pathology to find representative regions or patients for
higher-order approaches. So, instead of looking at 100 slides from 100 patients, we could start with



5 patients and a small region. We can do laser micro-dissection or spatial transcriptomics and
reduce a lot of the noise that may be in our dataset. Digital pathology also allows for hypothesis
generation and data screening. We can start to predict the genotype of patients directly from their
H&E. In order to help facilitate this research, Prof. Janowczyk’s group built a number of open-source
tools – the HistoTool suite (e.g., histoqc.com, quickannotator.com, patchsorter.com,
cohortfinder.com).

There are two parts in the “magic” of developing a biomarker from slides: a pre-analytical
component and a post-analytical component. The post-analytical component is essentially user
specific, and outside the scope of HistoTool. On the other hand, pre-analytical components are
shared in every biomarker project. HistoTool provides an open-source preanalytical pipeline. The
first tool in the kit is HistoQC, which allows for highly reproducible quality control, and has been
shown to improve concordance between readers from about 70% to about 96%. HistoBlur allows
for rapid and precise detection of blurry objects at scale, so we avoid performing computations on
regions that are unlikely to work well with our classifiers. With QuickAnnotator we can annotate
objects very rapidly, in some cases 100 times faster. PatchSorter is a rapid image labelling tool,
shown to improve efficiency by 400%. All three of these tools are aided by deep learning, so they
become agnostic to the types of stain and the tissue type, and actually can work even outside of
cancer, for instance in kidney diseases, or even in predicting heart rejection. Lastly, we have
CohortFinder, a tool for intelligent data partitioning using quality control metrics.

Touching upon the challenges: there is still a lot of inter-site data variability, such as staining
variability, scanning differences, protocol differences. There are infrastructure limitations, like
storage volumes, integration into clinical routines, access to clinical metadata. And, of course, we
would like explainability, we would like to be able to understand what the features we find actually
mean.

Digital radiology: AI guided cancer diagnosis and treatment planning

Bettina Baeßler is Professor and Head of Cardiovascular Imaging and Artificial Intelligence at
University Hospital, Würzburg, Germany. Radiology abandoned film and went fully digital very early



on, so, compared to other medical disciplines, it is quite ahead in AI development. However, there
are still many potential applications for AI in radiology, not only in diagnostic decision making or
image detection segmentation, but all along the entire imaging workflow, beginning with the
indication and scheduling for a radiology exam, image acquisition, and reconstruction. For example,
MR Imaging needs reconstruction of the images, and this could be AI-assisted today. Segmentation,
detection, and quantification as well as diagnostic decision making could be aided by AI, but we can
also go even further and have AI-assisted reporting and communication, as well as prognostic
assessment. So, there is quite a wide range of potential applications. Not all of them are currently
addressed. Although the main focus is on the analytical and diagnostic part, the workflow aspects at
the beginning of the pipeline are very interesting, and hopefully more applications will be coming
out for speeding up this process and eliminating the hurdles we tend to see in the clinical setting.

In oncological imaging there are currently three main AI applications. There is detection, i.e.,
detecting regions in the images which are not normal. There is characterization, subdivided in
diagnosis (defining abnormalities as benign or malignant); staging (assigning patients to particular
categories) and imaging genomics (linking imaging to genetic and molecular features). Finally, we
can use AI for assessing treatment response beyond what is normally used in clinical routine, such
as, for example, the RECIST criteria (Response Evaluation Criteria in Solid Tumours), which are
known to have some limitations. All of these different kinds of data sources and medical images are
set to enable modern healthcare strategies. When it comes to precision medicine, all of these data
are very relevant, and medical imaging is only one part of the whole, but a very interesting part.

There are many different omics clusters: genomics, epigenomics, transcriptomics, proteomics, and
so on. Oncological radiology has also an omics cluster, called radiomics. This is a method that uses
information about the spatial distribution of Gy values in medical imaging to extract mathematical
features, quantitative features, biomarkers, feed them into the big data pipeline, and then mine them
for improved decision making. Our current criterion for assessing oncological response is RECIST,
but unfortunately important changes stay undetected with this method, and this is where radiomics
comes in, allowing us to move to more deep learning-based approaches. We can have our images,
but we can also annotate them, not only by measuring size but also by drawing regions of interest in
our images manually or automatically. We can do different things with this. One is radiomics,
another is deep learning, and there is also something called habitat imaging, which looks at the
micro-structure of, for example, an oncological image. We know that tumours are heterogeneous,
and often have different clonal compositions which might also change during treatment. The idea
was that maybe our images can reflect this intra-tumour heterogeneity because we can see there are
different areas in the image, and by extracting these mathematical numbers, we can also display
those features as a map. The idea was to get more information out of the image, which reflects, for
example, histopathology or clonal status. How does this work? We take an image, for example, an
MRI or a CT scan. We do a segmentation which can be done in different versions: 2D, 3D, manual,
semiautomatic, fully automatic. And then, we extract those features by mathematical procedures of
varied complexity. There are four main types of radiomic features: morphological (shape and
volume); statistical, which is further classified into first-order statistical features (histogram) and
higher-order statistical features (texture); regional (which represent intra-tumour clonal
heterogeneity through subregional clustering); and model-based (extracted using mathematical
approaches). Then, we can apply additional filtering on the images, for example, enhance edges.
Professor Baeßler took an example of a radiomics approach for differentiation of benign versus
malignant lung nodules, which showed how much more information we can glean compared to the
CT alone. We can also predict progression-free survival. Some radiomics features have been shown
to be better predictors for progression-free survival than the standard features of age or gender or
performance, or even clinical performance status. Furthermore, we can predict mutational status.
Still looking at lung cancer, there are features associated with, for example, EGFR receptor



positivity or negativity. So, there are many correlations between radiological features and genomic
or histopathological ones. If we do not manually extract those features but put the images directly
into a pipeline, then, we can do deep learning. There is a wealth of studies for deep learning in
medical imaging. One field where DL is used a lot is lung cancer detection. An algorithm is trained
to detect candidate nodules, which are then classified in benign or malignant tumours. Other fields
where DL is often applied are breast cancer detection, and rectal cancer, where the segmentation is
combined with a tumour or non-tumour probability map. There are a number of FDA-approved
software available, mainly for breast lesion characteristics, pulmonary nodule detection and prostate
lesion characterization.

Of course, there are also limitations and challenges, one being standardisation. Many technical
factors influence the extracted radiomic features, so, radiomic studies often cannot be applied to a
different dataset. Another big challenge is data anonymisation. A very interesting study was
conducted, which was also highlighted in the Wall Street Journal. Researchers managed to identify
the patients from MR images of their head by reconstructing their features with face-recognition
software. This is a huge challenge that needs to be addressed. For better data protection, we must
look at learning infrastructures. With local learning, all the training is done locally and is not
automatically shared with other institutions. This is obviously very limiting. In central learning,
data and algorithms are sent to a dedicated server, to which all the hospitals have access, and the
information is shared. This structure is impractical both in terms of data increase and data privacy.
It is not secure, and for that reason it is not allowed in the European Union. Federated learning
was until recently the main solution. The systems are trained locally, and the raw data stays locally.
Only the weights are transferred to a central location, thus resolving the privacy issue. The learnings
are just numbers and do not reveal information about the patient. The final model is then combined
using these weights. The RACOON project in Germany is an example of such a federated learning
infrastructure: incentivised by the Covid pandemic all the German university hospitals initially
contributed their data on lung disease but are now extending the dataset. We can even go beyond
federated learning into swarm learning, which eliminates the central server and uses blockchain
technology, so it is even more secure. We are currently combining a swarm learning approach with
generative learning diffusion models to get synthetic data which we can then share with, for
example, the industry, for training reliable models. This is quite an ambitious project, but it is a very
interesting new approach in medical imaging.

Interpretable deep learning in biology

The final speaker was María Rodríguez Martínez, Staff Member at IBM Research, Zurich. One of
the main recent achievements for biology probably is AlphaFold, an AI system that can predict
protein folding with astonishing levels of accuracy. Unfortunately, DL models behave like black
boxes, and this causes problems. For instance, hidden data biases. We may have cohorts that are
extremely skewed, perhaps gender or ethnic biased. Wrong hypotheses may be formed, we expect
some treatment to have a good response based on other cohorts, but it actually does not work in a
different population. There can also be hidden software errors, quite often the model gives you a
prediction that seems reasonable but is actually wrong. Even if the model were perfectly good and
accurate, with unbiased data, scientists would still want to understand the mechanisms. If we are
stratifying cancer patients, we want to understand, for instance, why the model thinks that a given
person should receive aggressive therapy. While we may not be able to make deep learning models
fully transparent, there is a midway approach, called interpretable deep learning. IBM has been
developing this approach for different applications. For instance, PaccMann, a DL model to predict
drug sensitivity on cell lines. What is important about this model, in this context, is the interpretable
aspect. The way we achieve it here is through attention mechanisms. This is something that you
include in your model when you are building it. And then, the model gives higher weight to those



features that are important to make a prediction. Let’s take for example two different compounds,
masitinib and imatinib. Both of them are FDA approved for the treatment of leukaemia. The two
compounds are almost identical, except for one atom. In one you have sulphur and in the other
nitrogen. In masitinib we see that PaccMann is quite certain that this atom is important, most of the
attention weight is concentrated on it. While in the case of imatinib, we see that the attention is here
and there, with no winning pattern. This is qualitative. It is still not a full explanation of how these
compounds work, but by comparing the two, we can at least draw a new hypothesis.

New techniques have enabled sequencing of T-cell receptors (TCRs) and their antigenic targets
(epitopes), and we can now research the missing link between TCR sequence and epitope binding
specificity. TITAN (Tcr epITope bimodal Attention Networks) is a multimodal neural network that
encodes both TCR sequences and epitopes separately. We can then ask the model to give us the
binding likelihood. But we can also extract insights from the attention mechanisms. We can get an
idea, for example, of which amino acids may be important for the binding. Now, the other important
aspect of interpretability is that it can also tell you when things do not work as expected. This was a
harder test, because of lack of data. But the interesting thing was that the attention maps clearly
showed that something was not right. Interpretability can tell you when things work well and help
you elaborate new hypotheses, but it can also tell you when things do not work, and in science, this
is equally important. Going back to more image-based digital pathology, IBM has developed
interpretable models to predict the focus on colorectal cancer. Often, score grading is based on
different RNA-sequencing agents, but usually the most abundant data type for patients is images.
Can we try to predict gene expression values from images? Yes, it has been done, but the accuracy is
not ideal, and the models are opaque, we have no understanding of how they work. Again,
interpretability can improve, at least somewhat, the prediction. In a study, Dr. Martínez’s group
used the Cancer Genome Atlas (TCGA) data. Each image is divided in different patches. A technique
was used, called multiple-instance learning, in which you assume there is a signature somewhere,
but maybe not all patches are going to have it. Some of the patches in a whole image slide might be
perfectly normal, the cancer signature might be only associated to some of the sub-patches. With
multiple-instance learning we use attention mechanisms to see the gene expression level of each
sub-patch, and then use that attention score as a sub-weight. We give higher weight to the patches
that the model finds more informative. To quantify the accuracy, for each patient we get a predicted



value and then, we can compare them with the measured value because we have the RNA-seq data
from the CGA. And then, instead of just having the absolute distance, we can compute percentages.
This is also comparable across patients and models.

With interpretability we can enhance prediction and learn from error. These models have proven to
perform 30% better than current state-of-the-art models. Of course, what we are doing is extremely
hard. We are asking the model to predict gene expression values from an image, and we cannot
expect perfection, but the ability to visualise attention scores gives us rich information about what
the model finds important. In conclusion, deep learning is achieving breakthrough performances, but
models are black boxes, we have no idea what is driving the prediction, thus we fail to gain insights
about cancer, why this patient is stratified or why this therapy is working on this patient. Also, very
importantly, these black boxes might be hiding data or algorithmic errors. Interpretability allows us
to extract new insights about biological mechanisms and helps identify algorithmic/data biases.
Interpretability improves prediction accuracy and generation of visual hypotheses.


